1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
shelleyloar59 edited this page 2025-05-30 09:25:26 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, wiki.myamens.com we are excited to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled variations varying from 1.5 to 70 billion parameters to build, experiment, and properly scale your generative AI ideas on AWS.

In this post, we show how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled versions of the designs too.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses support finding out to enhance reasoning abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A key differentiating feature is its support knowing (RL) step, which was used to improve the design's actions beyond the standard pre-training and tweak process. By integrating RL, DeepSeek-R1 can adapt more effectively to user feedback and objectives, eventually boosting both relevance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, meaning it's equipped to break down complicated questions and reason through them in a detailed way. This directed reasoning procedure permits the design to produce more precise, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT capabilities, aiming to produce structured actions while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has caught the industry's attention as a versatile text-generation design that can be incorporated into different workflows such as agents, logical reasoning and data interpretation jobs.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion criteria, allowing efficient reasoning by routing queries to the most relevant professional "clusters." This method allows the design to concentrate on different problem domains while maintaining overall effectiveness. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 model to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more effective designs to mimic the habits and thinking patterns of the bigger DeepSeek-R1 model, utilizing it as an instructor design.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend releasing this model with guardrails in location. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid damaging material, and examine designs against key security criteria. At the time of composing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce multiple guardrails tailored to various use cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you need access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limitation boost, create a limitation increase demand and reach out to your account group.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For instructions, see Set up consents to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, avoid harmful material, and examine designs against crucial security criteria. You can carry out precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to examine user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general flow includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, forum.altaycoins.com it's sent to the model for reasoning. After getting the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following areas demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, pick Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and choose the DeepSeek-R1 design.

The design detail page offers vital details about the design's abilities, prices structure, and execution guidelines. You can discover detailed use guidelines, including sample API calls and code bits for combination. The design supports numerous text generation jobs, consisting of material development, code generation, and question answering, using its support learning optimization and CoT reasoning capabilities. The page also includes deployment options and licensing details to assist you begin with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, select Deploy.

You will be triggered to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, get in an name (in between 1-50 alphanumeric characters). 5. For Number of instances, get in a number of instances (in between 1-100). 6. For Instance type, choose your circumstances type. For optimal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended. Optionally, you can configure sophisticated security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service function authorizations, and file encryption settings. For many utilize cases, the default settings will work well. However, for production deployments, you might want to evaluate these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to begin using the design.

When the release is complete, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in play ground to access an interactive interface where you can try out different triggers and adjust model parameters like temperature and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for ideal results. For example, content for inference.

This is an excellent way to explore the model's thinking and text generation capabilities before incorporating it into your applications. The playground offers instant feedback, assisting you understand how the design reacts to numerous inputs and letting you tweak your triggers for optimal results.

You can quickly test the model in the playground through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to carry out inference utilizing a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up reasoning criteria, and sends a demand to create text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides two practical methods: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both methods to assist you choose the method that best fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The design web browser displays available models, with details like the service provider name and design capabilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card. Each model card shows key details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if applicable), indicating that this model can be signed up with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to conjure up the model

    5. Choose the model card to view the model details page.

    The design details page includes the following details:

    - The model name and service provider details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you deploy the design, it's advised to evaluate the model details and license terms to validate compatibility with your use case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, use the automatically created name or produce a custom-made one.
  1. For example type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, enter the number of instances (default: 1). Selecting proper instance types and counts is crucial for expense and performance optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this model, oeclub.org we strongly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to deploy the design.

    The release process can take a number of minutes to complete.

    When implementation is complete, your endpoint status will change to InService. At this point, the model is prepared to accept reasoning requests through the endpoint. You can keep an eye on the deployment development on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the implementation is complete, you can conjure up the design utilizing a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get begun with DeepSeek-R1 using the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the required AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to deploy and use DeepSeek-R1 for reasoning programmatically. The code for releasing the model is provided in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Clean up

    To prevent undesirable charges, complete the actions in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the model utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace implementations.
  5. In the Managed releases area, find the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the proper deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you deployed will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, archmageriseswiki.com and Getting started with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies construct ingenious solutions utilizing AWS services and sped up calculate. Currently, he is focused on establishing techniques for fine-tuning and optimizing the inference performance of large language models. In his leisure time, Vivek delights in hiking, watching motion pictures, and attempting various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about developing solutions that help consumers accelerate their AI journey and unlock organization value.